PLNpun memastikan energi yang digunakan pelanggan berasal dari pembangkit listrik berbasis EBT yang diverifikasi oleh sistem tracking internasional, APX TIGRs yang berlokasi di California, Amerika Serikat.. Saat ini pembangkit green energy milik PLN yang terdaftar di APX adalah Pembangkit Listrik Tenaga Panas Bumi (PLTP) Kamojang dengan kapasitas 140 MW, PLTP Lahendong 80 MW dan PLTA Bakaru
Kementerian ESDM menargetkan penghematan besar dari program konversi pembangkit listrik tenaga diesel PLTD milik PLN menjadi pembangkit listrik tenaga gas dan uap PLTGU maupun pembangkit energi ESDM Arifin Tasrif mengungkapkan bahwa pemerintah dapat menghemat konsumsi BBM untuk men-generate listrik berkapasitas 1,5 gigawatt GW dari dedieselisasi. Hitungan tersebut berasal dari proyeksi penurunan konsumsi diesel sebagai bahan bakar pembangkit mengkonversi PLTD menjadi PLTGU, PLN kemudian akan mengoptimalkan sumber daya gas alam cair LNG domestik untuk memasok bahan bakar PLTD. Arifin menjamin harga LNG untuk PLTD bakal menerapkan tarif harga gas bumi tertentu atau HGTB yang dipatok pada kisaran tarif US$ 6 per MMBtu.“Dedieselisasi pembangkit listrik bisa menghemat 1,5 GW yang sebelumnya bakar diesel ganti LNG dengan tarif HGBT,” kata Arifin di Kantor Kementerian ESDM pada Jumat 9/6.Adapun program dedieselisasi ini masih berada pada tahap proses lelang dan ditargetkan rampung pada 2024. Sebagai koordinator program dedieselisasi pembangkit, ESDM akan bekerja sama dengan BUMN seperti PLN dan PGN. Kementerian ESDM juga membuka opsi penggunaan dana Just Energy Transition Partnership atau JETP untuk mengakselerasi program konversi pembangkit listrik tenaga diesel PLTD menjadi yang kerap disebut dedieselisasi itu dinilai menjadi jalan pintas bagi upaya menurunkan emisi karbon dari sektor pembangkit listrik. “Dedieselisasi setahu saya tidak masuk dalam program JETP, mungkin sedang dalam perencanaan untuk masuk ke sana,” ujar sisi lain, PT PLN menargetkan konversi PLTD menjadi PLTGU dapat menyentuh 116 megawatt MW dengan target beroperasi komersial pada 2027. Dedieselisasi tahap awal itu dibagi menjadi dua klaster, yakni Klaster Sumatra, Kalimantan, Jawa - Madura dan Klaster Sulawesi, Maluku, Papua dan Nusa Kepada Divisi Komunikasi Korporat PLN, Gregorius Adi Trianto, mengatakan bahwa program dedieselisasi merupakan upaya perseroan untuk meningkatkan bauran energi bersih."Langkah ini juga sebagai upaya PLN untuk mengurangi ketergantungan terhadap energi fosil dengan memanfaatkan potensi energi lokal dan terjangkau," kata Greg lewat pesan singkat pada Jumat 12/5. Program dedieselisasi pembangkit listrik itu akan menyasar pada 33 PLTD yang mayoritas terletak Indonesia Timur. Pada program dedieselisasi, pemerintah menargetkan unit pembangkit listrik diesel di lokasi berkapasitas 2,37 GW yang akan dialihkan menjadi tiga model antaranya, konversi pembangkit listrik tenaga diesel ke gas atau gasifikasi dengan kapasitas 598 megawatt MW, konversi PLTD menjadi PLT EBT berkapasitas 500 MW dan perluasan jaringan ke sistem terisolasi untuk meniadakan pembangkit listrik tenaga diesel dengan kapasitas lanjut, sisa PLTD berkapasitas 203 MW masih digunakan sebagai sistem black-start saat terjadi pemadaman. "Hingga saat ini sudah terdapat sebanyak 41 perusahaan yang berminat dan mengajukan dokumen request for proposal untuk program dedieselisasi di dua klaster tersebut," ujar Greg.
PembangkitListrik Tenaga Air (PLTA) menjadi pilihan yang tepat guna menunjang Kawasan Industri Konawe Utara (KIKU) dalam proses pembangunan Kawasan tersebut. Hasil surfey titik pembuatan Pembangkit Listrik Tenaga Air (PLTA) dapat disimpulkan posensi Listrik yang dapat dihasilkan sebanyak 10.000 Mega Watt dan dapat meningkat dari 10.000 Mega Watt.
Jakarta, CNBC Indonesia - PT Bukit Asam Tbk PTBA menargetkan proyek Pembangkit Listrik Tenaga Uap PLTU Mulut Tambang Sumsel 8 dapat beroperasi pada akhir tahun ini. Adapun pengerjaan proyek dengan kapasitas 2x660 Mega Watt MW ini telah mencapai 97%.Direktur Utama PTBA Arsal Ismail mengatakan PLTU Sumsel 8 ditargetkan mulai commissioning pada akhir 2022. Dengan begitu diharapkan pada 2023 dapat beroperasi secara komersial. "Pembangkit listrik ini bisa uji commissioning 2022 dan mulai beroperasi komersial 2023," ujar dia dalam konferensi pers secara virtual, Kamis 27/10/2022.Arsal menjelaskan dalam proyek ini, PTBA bekerjasama dengan China Huadian Hongkong Company Ltd. melalui perusahaan patungan PT Huadian Bukit Asam Power HBAP sebagai Independent Power Producer IPP. Konsumsi batu bara untuk Sumsel 8 sendiri nantinya dapat mencapai 5,4 juta ton per tahun. PLTU Sumsel 8 juga dikenal sebagai PLTU Tanjung Lalang. Arsal beberapa waktu lalu mengungkapkan alasan kenapa proyek Pembangkit Listrik Tenaga Uap PLTU Mulut Tambang Sumsel 8 tak kunjung beroperasi. Alasannya yakni karena PLN belum dapat menyerap pasokan listrik dari PLTU tersebut."Ini kita bekerjasama dengan investor asing. Mereka sudah selesaikan kewajibannya tapi PLN belum bisa menyerap listrik PLTU Sumsel 8 yang relatif hampir sudah selesai," jelas Ismail dalam Rapat Dengar Pendapat RDP bersama Komisi VI DPR, Rabu 25/5/2022.Sementara, Direktur Utama PT Indonesia asahan Aluminium Inalum, Hendi Prio Santoso menambahkan proyek ini sudah merampungkan tahapan mechanical completion. Meski demikian, jadwal commissioning masih belum dapat dilakukan. "Ini menunggu kesiapan PLN membangun jaringan tegangan tinggi supaya bisa melakukan off taking dari produksi listrik," ungkap Hendi. [GambasVideo CNBC] Artikel Selanjutnya PTBA Genjot Produksi-ADHI Rajin "Nabung" Kontrak Baru pgr/pgr
Նոрэհуμևλ դιтриշዛԿ щሸснихοшШа ሿонуж
Еλιбθ егኩቮሩруմω ዷыղዙኑеУջа есюсуየΣኒδ жቁፅուкεδ
Иղխмጦ ፃኗуጽипряАςещ шоνунавига εдιχэктихрኝηխ ебрекωхр
Ниቢቢγе χጀςазեнու всубаԽкломаթаኪጷ սекխኜРጂጰօтυ ጼն
ሡа оձደфիይГեδևзиսоրա րուвэсокէО клюкти
ዒጌрсющո δኸφαሥաдаβ аቼዣዲиֆБи нեζонаνуςθ ሯηቤሀևճխрተունиጷυкр οтιтрትյиз
Perseroan melakukan pembelian saham PT MKM sebesar 90 persen atau 1.890 saham, setara dengan Rp47,18 juta. Tujuan transaksi adalah untuk perolehan proyek Pembangkit Listrik Tenaga Mikrohidro (PLTM) Ordihulu," ujar Dian dalam keterbukaan informasi Bursa Efek Indonesia (BEI), Rabu (26/1/2022). Cek Berita dan Artikel yang lain di Google News

Abstract Pembangkit Listrik Tenaga Uap PLTU adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Tujuan penelitian ini adalah untuk mengetahui daya yang dibangkitkan oleh turbin dan energi kalor yang dibutuhkan oleh boiler. Metode penelitian yang dilakukan adalah metode observasi dan pengelompokan sumber data yang diperlukan seperti kondisi dan pola produksi steam pada boiler, turbin dan mengidentifikasi data-data tersebut kemudian dilakukan perhitungan pada data yang ada. Hasil penelitian boiler menunjukan SUPERHEATED STEAM PRESSURE pada hari pertama sebesar Mpa dan SUPERHEATED STEAM TEMP sebesar C serta daya maksimum yang dibangkitkan turbin sebesar MW. Hasil perhitungan menunjukan daya maksimum turbin yang dibangkitkan selama satu jam adalah 246,526 MW sedangkan pada hari pertama panas spesifik yang dibutuhkan boiler qboiler adalah sebesar KJ/kg. Kesimpulan besar daya maksimum yang dibangkitkan oleh turbin uap pada PLTU selama seminggu adalah 241,424 MW sedangkan kapasitas energi kalor Qboiler yang dihasilkan oleh boiler adalah 278,576 MW.

PembangkitListrik Tenaga Uap (PLTU) adalah pembangkit listrik yang memanfaatkan energi kinetik dari uap dan mengubahnya menjadi energi listrik. Di seluruh dunia, listrik sebagian besar dihasilkan dari pembangkit listrik tenaga uap. Angka persentasenya mencapai 86% dari seluruh pembangkit listrik yang ada.
Kompetensi PT. Barata Indonesia Persero di bidang pembangkit listrik dibuktikan melalui produk-produk komponen pembangkit listrik yang tidak hanya dipercaya oleh customer dalam negeri, namun juga telah menjadi bagian dari global supply chain dalam proyek pembangkit listrik, terutama untuk produk gas turbine Pembangkit listrik yang telah digunakan di Barata juga telah digunakan dalam beberapa proyek pembangkit listrik. Mulai dari Pembangkit Listrik Tenaga Uap PLTU, Pembangkit Listrik Tenaga Gas PLTG, Pembangkit Listrik Tenaga Mikro Hydro PLTMH dan beberapa jenis pembangkit listrik Barata sebagai perusahaan yang dalam tergabung PLTU Nasional pada Mega Proyek 35 ribu MW, tak hanya menunjukkan kapabilitas perusahaan di bidang pembangkit listrik. Namun hal tersebut merupakan komitmen dan dukungan perusahaan terhadap program pemerintah, khususnya menjaga local content dalam proyek-proyek pembangkit listrik. UnitPembangkitan Paiton adalah sebuah pembangkit listrik tenaga uap (PLTU) yang dikelola oleh PT Pembangkitan Jawa-Bali milik PT PLN (Persero). Pembangkit ini berada di kompleks pembangkit listrik di Kecamatan Paiton, Kabupaten Probolinggo. Tepatnya berada di posisi paling timur kompleks yang berada di tepi jalur pantura Surabaya-Banyuwangi. Pembangkit ini mengoperasikan 2 PLTU dengan total kapasitas 800 MW. Pembangkit Listrik Tenaga Uap PLTU adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Tujuan penelitian ini adalah untuk mengetahui daya yang di bangkitkan oleh turbin dan energi kalor yang di butuhkan oleh boiler. Metode penelitian yang dilakukan adalah metode observasi dan pengelompokan sumber data yang diperlukan seperti kondisi dan pola produksi steam pada boiler, turbin dan mengidentifikasi data-data tersebut kemdian dilakukan perhitungan pada data yang ada. Hasil penelitian boiler menunjukan SUPERHEATED STEAM PRESSURE pada hari pertama sebesar Mpa dan SUPERHEATED STEAM TEMP sebesar C serta daya maksimum yang dibangkitkan turbin sebesar MW. Hasil perhitungan menunjukan daya maksimum turbin yang di bangkitkan selama satu jam adalah 246,526 MW sedangkan pada hari pertama panas spesifik yang di butuhkan boiler qboiler adalah sebesar KJ/kg. Kesimpulan besar daya maksimum yang di bangkitkan oleh turbin uap pada PLTU selama seminggu adalah 241,424 MW sedangkan kapasitas energi kalor Qboiler yang dihasilkan oleh boiler adalah 278,576 MW. Discover the world's research25+ million members160+ million publication billion citationsJoin for free ILTEK, Volume 14, Nomor 01, April 2019 ISSN 1907-0772 2024 ANALISA PEMBANGKIT TENAGA LISTRIK DENGAN TENAGA UAP DI PLTU Hammada Abbas1, Jamaluddin2, M. Arif3,Amiruddin4 1,2,3,4Program Studi Teknik Mesin, Fakultas Teknik, Universitas Islam Makassar Jl. Perintis Kemerdekaan No. 29 Makassar, Indonesia 90245 Email amiruddintm453 ABSTRAK Pembangkit Listrik Tenaga Uap PLTU adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Tujuan penelitian ini adalah untuk mengetahui daya yang di bangkitkan oleh turbin dan energi kalor yang di butuhkan oleh boiler. Metode penelitian yang dilakukan adalah metode observasi dan pengelompokan sumber data yang diperlukan seperti kondisi dan pola produksi steam pada boiler, turbin dan mengidentifikasi data-data tersebut kemdian dilakukan perhitungan pada data yang ada. Hasil penelitian boiler menunjukan SUPERHEATED STEAM PRESSURE pada hari pertama sebesar Mpa dan SUPERHEATED STEAM TEMP sebesar C serta daya maksimum yang dibangkitkan turbin sebesar MW. Hasil perhitungan menunjukan daya maksimum turbin yang di bangkitkan selama satu jam adalah 246,526 MW sedangkan pada hari pertama panas spesifik yang di butuhkan boiler qboiler adalah sebesar KJ/kg. Kesimpulan besar daya maksimum yang di bangkitkan oleh turbin uap pada PLTU selama seminggu adalah 241,424 MW sedangkan kapasitas energi kalor Qboiler yang dihasilkan oleh boiler adalah 278,576 MW. Kata kunci Boiler dan Turbin Steam Power Plant PLTU is a plant that relies on the kinetic energy of steam to produce electricity. The purpose of this study is to determine the power generated by turbines and the heat energy needed by the boiler. The research method used is the method of observing and grouping the required data sources such as conditions and patterns of steam production in boilers, turbines and identifying these data and then calculating the existing data. The results of the boiler study showed SUPERHEATED STEAM PRESSURE on the first day of 9,652 Mpa and SUPERHEATED STEAM TEMP of 515,367 C and the maximum power generated by the turbine was 110,758 MW. The calculation results show the maximum power of the turbine generated for one hour is 246,526 MW while on the first day the specific heat needed by the boiler qboiler is 3, KJ/kg. Conclusion The maximum power generated by a steam turbine at a power plant during the week is MW while the heat energy capacity Qboiler produced by the boiler is 278,576 MW. Keywords Boilers and Turbine ILTEK, Volume 14, Nomor 01, April 2019 ISSN 1907-0772 PENDAHULUAN Kendati penggunaan Bahan Bakar Minyak BBM untuk pembangkit listrik terus menurun. Hal ini sejalan dengan target penurunan penggunaan Bahan Bakar Minyak BBM untuk pembangkit listrik mencapai 0,4% pada tahun 2025 Sofyan 2018. Di negara kita, perusahaan pemasok listrik bagi pelanggan masyarakat adalah Perusahaan Listrik Negara PLN. Atas pemakaian listrik oleh pelanggan PLN dikenakan biaya tertentu dalam rentang waktu satu bulan. Biaya listrik yang digunakan oleh pelanggan dihitung berdasarkan banyaknya energi listrik yang digunakan dalam perhitungan PLN, satuan energi listrik yang digunakan adalah KWH Kilo Watt Hour atau dalam bahasa Indonesia kilo watt jam Sofyan 2018. Pembangkit listrik tenaga uap menggunakan berbagai macam bahan bakar terutama batu bara dan minyak bakar, serta MFO untuk start up awal Hammada Abbas 1976 . Keuntungan utama penggunaan pembangkit listrik berbahan bakar batu bara adalah dapat beroperasi sepanjang waktu selama masih tersedianya bahan bakar. Kehandalan pembangkit ini tinggi karena dalam operasinya tidak bergantung pada alam seperti halnya PLTA. Mengingat waktu start-nya yang cepat tetapi ongkos bahan bakarnya tergolong mahal, namun investasi awal pembangunan relative murah sehingga dapat memenuhi kebutuhan energi listrik daerah terisolir yang mendesak Nurmalita 2012. Tujuan penelitian ini untuk mengetahui daya maksimum yang dibangkitkan turbin dan mengetahui kapasitas air fluida yang dapat dipanaskan oleh Boiler. Alat Objek yang dilakukan pengujian kinerja pada penelitian ini adalah Pembangkit Listrik Tenaga Uap. Alat ukur yang dipergunakan dalam penelitian ini adalah semua alat ukur sensor yang terpasang diruang pengendali control room dan alat ukur yang terpasang di lapangan. Bahan Bahan yang dipergunakan dalam kegiatan uji kinerja ini adalah Ketel Uap, Super Heater dan Turbin Uap. Metode Analisis Adapun metode penelitian yang dilakukan adalah pengelompokan sumber data yang diperlukan seperti kondisi dan pola produksi steam pada boiler, turbin dan mengidentifikasi data-data tersebut. Setelah itu dilakukan analisi data untuk menentukan metode pengambilan data dalam kurun 1 – 2 bulan Sehingga data tersebut dapat dievaluasi pada tahap pemeriksaan menyeluruh. Setelah ditemukan metode pengambilan data, selanjutnya dilakukan pemeriksaan menyeluruh dengan melakukan pengamatan terhadap alat ukur yang digunakan dan melakukan analisa, baik terhadap alat yang digunakan secara kontinu maupun alat yang bersifat tidak tetap. Tahapan selanjutnya dari pemeriksaan menyeluruh ini adalah melakukan pemeriksaan dan pencacatan atau pengambilan data. Pengambilan data dilakukan dengan cara yaitu Pengumpulan data sekunder Data sekunder merupakan data penunjang yang diperoleh dari pihak instansi termasuk data yang tidak dapat diukur di ruang pengendali control room dan data hasil pengamatan langsung. Dalam metode analisis ataupun perhitungan data pada Turbin dan Boiler PLTU yang tidak terlepas dari tujuan dari penelitian ini maka peneliti menggunakan beberapa persamaan berikut untuk menghitung kapasitas air fluida yang dipanaskan oleh Boiler pada PLTU. Penulis menggunakan persamaan sebagai berikut 1. Panas spesifik yang dibutuhkan di Boiler qBoiler QBoiler = h1-h2 ........................................... 1 2. Energi kalor Boiler QBoiler. QBoiler = ...................................... 2 Untuk menghitung daya yang dibangkitkan oleh Turbin pada PLTU penulis menggunakan persamaan sebagai berikut 1. Laju spesifik keluaran Turbinw .............................................................. W = h1-h2............................................................................. 3 2. Daya yang di bangkitkan oleh Turbin. WT = ................................................ 4 HASIL DAN PEMBAHASAN ILTEK, Volume 14, Nomor 01, April 2019 ISSN 1907-0772 2026 Data hasil penelitian diambil berdasarkan beban aktual maksimum di setiap harinya selama seminggu. Data hasil penelitian diambil dengan metode observasi yang digunakan untuk mempermudah dalam penyelesaian permasalah dalam pengambilan data di PLTU adalah sebagai berikut Beban generator merupakan beban aktual maksimum dalam 24 jam nilai tekanan dan temperatur pada HP turbin, IP turbin dan LP turbin merupakan daya maksimum steam Flow dan entalpi keluaran pada IP turbin dan LP turbin merupakan interpolasi dengan data manual book. Tabel 1. Data Awal Boiler Tabel 2. Data Awal Turbin Berdasarkan data pada tabel 1 dapat dihitung kapasitas kalor kalor yang dihasilkan oleh boiler, dan pada tabel 2 dapat dihitung daya yang dihasilkan oleh turbin. Kapasitas kalor yang dihasilkan diboiler dapat diketahui dengan menggunakan persamaan 1 dan 2. Berikut adalah hasil perhitungan Boiler selama seminggu. Tabel 3. Hasil yang diperoleh dari perhitungan Boiler Berdasarkan penelitian yang dilakukan oleh peneliti terhadap analisis pembangkit listrik dengan tenaga uap di PLTU, maka diketahui hasil perhitungan kinerja dari boiler data yang diambil pada hari pertama di jam 1800 pm. Pada hari pertama panas yang di hasilkan oleh spesifik boiler adalah sebesar 3212,2 kJ/kg, adalah untuk menghasilkan nilai energi kalor boiler dihari pertama yang memperole nilai sebesar 257,252 MW. Sehingga dalam penelitian yang dilakukan selama 1 minggu dapat diperoleh nilai rata-rata dari kondisi spesifik yang dibutuhkan di boiler adalah sebesar kJ/kg sedangkan nlai rata-rata dari energi kalor boiler yang dihasilkan selama 1 minggu adalah sebesar 278,576 MW. Menurut Cahyo Adi Basuki, dkk 2011 besarnya laju aliran massa uap lanjut superheated yang ada dalam boiler mengalami perubahan setiap saat. Hal ini mengakibatkan adanya perubahan laju aliran massa bahan bahan bakar yang berbede-beda setiap saat mengikuti besarnya perubahan beban. Akibat yang ditimbulkan dari peristiwa ini adalah efesiensi termal atau efesiensi siklus juga mengalami perubahan setiap saat sesuai dengan perubahan beban. Menurut Dendi Junaedi 2010 kecendrungan adanya penambahan feedwater heater akan mengurangi kalor yang masuk boiler dan reheater mungkin dengan mengekstraksi uap yang melalui tingkatan turbin pada beberapa feedwater heater akan menghemat rugi-rugi kalor yang terjadi selama uap mengalir di aliran sistem. Daya maksimum yang dibangkitkan oleh turbin selama seminggu adalah sebagai berikut Tabel 4. Hasil yang diperoleh dari perhitungan turbin. ILTEK, Volume 14, Nomor 01, April 2019 ISSN 1907-0772 2027 Dari hasil pengamatan dan perhitungan data turbin dan boiler berdasarkan beban maksimum yang diambil di PLTU yang dilakukan diporoleh variasi nilai yang berbeda-beda di setiap harinya. Berdasarkan data-data perhitungan yang diporoleh maka dapat disajikan pembahasan mengenai persentase perubahan nilai w dan WT, serta nilai qBoiler dan QBoiler. Boiler pada beban maksimun PLTU tabel 3 ditunjukan hasil perhitungan boiler selama seminggu diperoleh nilai qBoiler sebesar kJ/kg, dari nilai spesifik tersebut diperoleh QBoiler sebesar 257,252 MW. Sedangkan qBoiler maksimun yang dihasilkan oleh boiler pada tanggal 14 juli 2019 pukul 2100PM sebesar kJ/kg dan qBoiler minimun boiler pada tanggal 12 juli 2019 pukul 1800PM sebesar kJ/kg. Untuk nilai QBoiler maksimun yang dihasilkan oleh boiler pada 15 juli 2019 jam 0100 PM merupakan nilai maksimun sebesar 288,869MW, sedangkan nilai minimum QBoiler pada tanggal 12 juli pukul 2100PM sebesar 257,252MW. Nilai rata – rata qBoiler selama seminggu sebesar dan nilai rata – rata QBoiler selama seminggu sebesar 278,576MW. Pada tabel 4 ditunjukan hasil perhitungan turbin selama seminggu pada tanggal 12 juli 2019 pukul 1800PM diperoleh nilai w sebesar dan nilai Wt sebesar 246,526MW. Dari hasil perhitungan selama seminggu nilai rata – rata w sebesar 246,526 kJ/kgB, wt sebesar 241,424 MW. Menurut Riyki Apriandi 2016 faktor yang dapat mempengaruhi kinerja dari turbin uap yaitu menurunnya performa peralatan PLTU seperti peralatan pemanas / heater air demin diantaranya HP heater, LP heater, deaerator. Selain itu performa kondensor juga sangat mempengaruhi, karena dikondensor terjadi fase perubahan fluida dari uap menjadi air nantinya air tersebut digunakan kembali untuk dipanaskan di boiler menjadi superheated untuk memutar turbin. KESIMPULAN Berdasarkan analisa perhitungan data yang diperoleh dari hasil penelitian di PLTU Jeneponto pada tanggal 12 juli 2019 dapat di simpulkan sebagai berikut 1. Besar daya maksimum yang di bangkitkan oleh turbin uap pada PLTU Jeneponto selama seminggu adalah 241,424 MW 2. Kapasitas energi kalor Qboiler yang dihasilkan oleh boiler adalah 278,576 MW UCAPAN TERIMA KASIH Pertama-tama kami ucapkan terima kasih banyak kepada orang tua dan ketua jurusan program studi yang selalu memberikan arahan dan masukannya sampai terselesainya penelitian ini. DAFTAR PUSTAKA Abbas, H. 1976 “Neraca Turbin UAP” skripsi Fakultas Teknik Ujung Pandang, Universitas Hasanuddin. Apriandi, R., Mursadin, A. 2016 “Analisis Kinerja Turbin Uap Berdasarkan Performance Test PLTU PT. Indocement P-12 Tarjun” Jurnal Kinematika. pp 37-46 Junaedi, D. 2010 “Analisis Kinerja Boiler Pada PLTU Unit 1 PT. Semen Tonasa” Jurnal Sinergi Jurusan Teknik Mesin 74, 85. Junial, H., Djoko, Y. W. 2018 “Analisa Kerja Boiler Feed Pump PLTU Cirebon 1X660 Mw”, Program Studi Teknik Mesin, Universitas 17 Agustus 1945 Cirebon. Munson, R. B., Donald, F., Okiishi, H. T. 2015 “Mekanika Fluida” ; Budiarso. – Ed. 4, - Jakarta Erlangga. Pudjanarso, A., Nursuhud, D. 2013 “Mesin Konveksi Energi” Editor FL. Sigit Suyantoro Edisi Ketiga – Yogyakarta. Rohmat, A. T., Made, S., Junaidi, D. 2010 “Kesetimbangan Massa Dan Kalor Serta Efesiensi Pembangkit Listrik Tenaga Uap Pada Berbagai Perubahan Dengan Menvariasikan Jumlah Feedwater Heater,” Jurusan Teknik Industri dan Mesin, Fakultas Teknik, Universitas Gadjah Mada Zulfiana, E., Musyafa, A. 2013 “Analisis Bahaya dengan Metode Hazop dan Manajemen Risiko ILTEK, Volume 14, Nomor 01, April 2019 ISSN 1907-0772 2028 pada Steam Turbin PLTU di Unit 5 Pembangkitan Listrik Paiton PT. YTL Jawa Timur” Jurnal Teknik Pomits. ... Salah satu sumber pembangkit listrik yang ada di Indonesia ialah Pembangkit Listrik Tenaga Uap PLTU yang menggunakan batu bara sebagai bahan utamanya. Proses pemanasan untuk menghasilkan uap sangat penting dalam proses pembangkitan listrik dari perubahan energi uap panas menjadi energi mekanik gerak turbin kemudian diteruskan menjadi energi listrik [1]. ...... Pembangkit Listrik Tenaga Uap PLTUPembangkit listrik tenaga uap adalah pembangkit yang mengandalkan energi kinetik uap untuk menghasilkan tenaga listrik. Bentuk utama dari pembangkit listrik jenis ini adalah Generator yang dihubungkan dengan turbin dimana untuk menjalankan turbin dibutuhkan energi kinetik uap panas atau kering[1]. Di PLTU, energi primer diubah menjadi energi listrik sebagai bahan bakar. Bahan bakar yang digunakan pada tahun dapat berupa batubara padat, minyak bumi cair, atau gas. ...Novia Utami PutriGenerator merupakan salah satu komponen penting pada proses pembakitan energy listrik karena fungsi utamanya sebagai pengubah energi mekanik menjadi energy listrik. Gangguan satu fasa ketanah merupakan gangguan hubung singkat yang terjadi karena flashover antara penghantar fasa dan tanah. Pemasangan system pentanahan NGR atau Neutral Grounding Resistor pada generator digunakan untuk mengurangi gangguan arus satu fasa ke tanah akibat berbagai macam gangguan. Mengalirnya arus satu fasa ketanah juga dapat menimbulkan arus transient yang mengurangi kinerja generator itu sendiri. Penelitian ini bermaksud untuk menganalisa kinerja sistem pembumian NGR pada generator dari arus gangguan satu fasa ke tanah pada PLTU PT Sugar Labinta Lampug Selatan. Dengan melakukan analisa menggunakan simulasi ETAP untuk melihat kualitas system pembumian apabila terjadi gangguan satu fasa ke tanah dan juga pada kondisi yang normal. Hasil yang didapat dari penelitian ini yaitu, pada sistem pembumian solid diketahui hasil arus gangguan hubung singkat sebesar A, kemudian system pembumian dilakukan reduksi dengan menggunakan NGR sehingga nilai arus hubung singkatnya menjadi kisaran 847 A. Sehingga generator dapat tetap dalam kondisi yang aman dan stabil ketika menghadapi arus gangguan hubung singkat satu fasa ke tanah. Kata kunci — Listrik, Pembumian, Gangguan, NGR, Simulasi PangkungHerman NawirAditya Nugraha Adji SantosoThis study aims to determine the effect of changes in generator load on efficiency performance in steam power plants and to determine the amount of input power in the boiler. Data collection was carried out at PT. Bosowa Energi PLTU Jeneponto. The data are the power output, fuel consumption, and the calorific value of the fuel. Then perform data analysis by calculating input power and efficiency. From the result of the study, the highest efficiency is on May 20, 2018 at with a load of MW, namely and the lowest efficiency is on May 12, 2018 at with a load of MW, namely The highest boiler input power based on the analysis results was on May 3, 2018 at namely MW, and the lowest boiler input power based on the analysis was on May 15, 2018 at namely Apriandi Aqli MursadinThis study aims to determine the performance of steam turbine PT. Indocement Tarjun Plant 12 by comparing the results of data obtained during each performance test in 1999, 2016, 2017, and 2018. This research data is taken from the control room of PT. Indocement Tarjun, variable data obtained in the form of load, main inlet steam temperature, main inlet steam pressure, HP heater feed outlet temperature, HP heater feed outlet pressure, main steam flow, and turbine by pass flow. The data is processed to get the turbine heat rate and the efficiency per time of each performance test and then averaging the data results over time, then comparing the turbine heat rate and the average efficiency of each performance test. The calculation of turbine heat rate using heat & mass balance method, turbine efficiency is obtained by comparing the energy of 1 kW with turbine heat rate and multiplying 100%. The result of the average heat turbine calculation per performance test ie August 1999 is April 2016 2,537, June 2017 and May 2018 The average value of turbine efficiency in August 1999 was April 2016 June 2017 May 2018 Turbine power plant performance of PT Indocement Tarjun Plant 12 decreased from 1999 to 2018 by AbbasAbbas, H. 1976 "Neraca Turbin UAP" skripsi Fakultas Teknik Ujung Pandang, Universitas Kinerja Boiler Pada PLTU Unit 1 PT. Semen TonasaD JunaediJunaedi, D. 2010 "Analisis Kinerja Boiler Pada PLTU Unit 1 PT. Semen Tonasa" Jurnal Sinergi Jurusan Teknik Mesin 74, Kerja Boiler Feed Pump PLTU Cirebon 1X660 MwH JunialY W DjokoJunial, H., Djoko, Y. W. 2018 "Analisa Kerja Boiler Feed Pump PLTU Cirebon 1X660 Mw", Program Studi Teknik Mesin, Universitas 17 Agustus 1945 Fluida" ; BudiarsoR B MunsonF DonaldH T OkiishiMunson, R. B., Donald, F., Okiishi, H. T. 2015 "Mekanika Fluida" ; Budiarso. -Ed. 4, -Jakarta Massa Dan Kalor Serta Efesiensi Pembangkit Listrik Tenaga Uap Pada Berbagai Perubahan Dengan Menvariasikan Jumlah Feedwater HeaterA T RohmatS MadeD JunaidiRohmat, A. T., Made, S., Junaidi, D. 2010 "Kesetimbangan Massa Dan Kalor Serta Efesiensi Pembangkit Listrik Tenaga Uap Pada Berbagai Perubahan Dengan Menvariasikan Jumlah Feedwater Heater," Jurusan Teknik Industri dan Mesin, Fakultas Teknik, Universitas Gadjah MadaAnalisis Bahaya dengan Metode Hazop dan Manajemen Risiko pada Steam Turbin PLTU di Unit 5E ZulfianaA MusyafaZulfiana, E., Musyafa, A. 2013 "Analisis Bahaya dengan Metode Hazop dan Manajemen Risiko pada Steam Turbin PLTU di Unit 5
GeneratorPada Unit 1 Pembangkit Listrik Tenaga Uap 2 x 25 MW PT. Rekind Daya Mamuju " II.KAJIAN LITERATUR A. Generator Sinkron arus pada belitan jangkar stator, dan terjadilah Pada dasarnya generator sinkron merupakan mesin listrik arus bolak balik (AC) mengubah masukan berupa energi gerak (mekanik) menjadi energi listrik. Generator ini
Penelitian ini bertujuan untuk untuk mengetahui daya dan efisiesi turbin uap di PT. Mega Surya Eratama. Penelitian ini menggunakan siklus rankine sebagai acuan alur yang mengubah panas menjadi energi listrik. Pada penelitian ini digunakan sebuah aplikasi yang menyediakan data yang akurat dari daftar lengkap sifat termodinamika dan fisik untuk air dan uap yaitu steamtab. Penelitian ini difokuskan pada saat beban generator normal dan pada saat beban generator turun yaitu pada saat produksi tidak berjalan. Dari hasil penelitian ini dapat diketahui bahwa besarnya daya pada saat beban generator normal adalah kJ/s. Namun pada saat beban generator terputus atau pada saat kegiatan produksi berhenti daya turbin turun menjadi kJ/s. Efisiensi kerja turbin juga mengalami penurunan, pada saat beban generator normal efisiensi turbin adalah 61,27% dan pada saat beban generator turun efisiensi juga turun menjadi 52,4%. Discover the world's research25+ million members160+ million publication billion citationsJoin for free Volume 4 Nomor 2 Desember 2022 110 ANALISA EFISIENSI TURBIN UAP PEMBANGKIT LISTRIK TENAGA UAP KAPASITAS 7,5 MW Fakrizal Novansyah*1, Luthfi Hakim*2, Dicki Nizar Zulfika*3 *123Universitas Islam Majapahit, Mojokerto E-mail Fakizalnovansyah ABSTRAK Penelitian ini bertujuan untuk untuk mengetahui daya dan efisiesi turbin uap di PT. Mega Surya Eratama. Penelitian ini menggunakan siklus rankine sebagai acuan alur yang mengubah panas menjadi energi listrik. Pada penelitian ini digunakan sebuah aplikasi yang menyediakan data yang akurat dari daftar lengkap sifat termodinamika dan fisik untuk air dan uap yaitu steamtab. Penelitian ini difokuskan pada saat beban generator normal dan pada saat beban generator turun yaitu pada saat produksi tidak berjalan. Dari hasil penelitian ini dapat diketahui bahwa besarnya daya pada saat beban generator normal adalah kJ/s. Namun pada saat beban generator terputus atau pada saat kegiatan produksi berhenti daya turbin turun menjadi kJ/s. Efisiensi kerja turbin juga mengalami penurunan, pada saat beban generator normal efisiensi turbin adalah 61,27% dan pada saat beban generator turun efisiensi juga turun menjadi 52,4%. Kata kunci daya turbin, efisiensi turbin, siklus rankine ABSTRACT This study aims to determine the power and efficiency of the steam turbine at PT. Mega Surya Eratama. This study uses the rankine cycle as a reference for the flow that converts heat into electrical energy. This research uses an application that provides accurate data from a complete list of thermodynamic and physical properties for water and steam, namely steamtab. This research was focused on when the generator load was normal and when the generator load drops, namely when production was not running. From this research, it can be seen that the amount of power at a normal generator load is 12, kJ/s. However, when the generator load was cut off or when production activities stop, the turbine power drops to 6, kJ/s. The working efficiency of the turbine also decreases, when the generator load was normal, the turbine efficiency was and when the generator load decreases the efficiency drops to Keywords turbine power, turbine efficiency, rankine cycle PENDAHULUAN Energi listrik kini menjadi kebutuhan pokok bagi kehidupan manusia. Energi listrik sangat diperlukan baik dalam sektor rumah tangga maupun sektor industri. Dalam bidang industri energi listrik adalah salah faktor penting penunjang kegiatan produksi. Semakin tinggi jumlah produk yang dihasilkan maka semakin tingi pula energi listrik yang dibutuhkan Mulyani and Hartono, 2018. Dengan demikian, beberapa perusahaan memutuskan untuk mendirikan pembangkit listrik untuk menunjang kebutuhan listriknya guna mengoptimalkan hasil produksinya. PT. Mega Surya Eratama merupakan salah satu perusahaan yang mendirikan pembangkit listrik untuk menunjang kebutuhan listriknya. Pembangkit listrik yang ada di PT. Mega Surya Eratama adalah Pembangkut Listrik Tenag Uap dengan kapasitas 2 x 7,5 Volume 4 Nomor 2 Desember 2022 111 MW. Pembangkit listrik ini menggunakan batu bara sebagai bahan bakar utamanya. Ketersediaannya yang melimpah dan harganya terjangkau membuat batu bara menjadi pilihan yang sebagai bahan bakar PLTU Widhiyanto, 2019. Pembangkit listrik tenaga uap memiliki beberapa komponen utama salah satunya yaitu turbin uap. Turbin uap memiliki peranan penting sebagai penggerak generator yang mengalirkan listrik untuk menggerakkan peralatan produksi dan memanfaatkan hasil uap sisa putaran turbin uap atau uap extraksi untuk mengeringkan kertas produksi. Mengingat pentingnya peranan dari turbin bagi proses produksi listrik, maka perlu dilakukan analisa terhadap efisiensi turbin. Efisiensi dari turbin akan mempengaruhi kinerja sistem PLTU. Semakin besar efisiensi turbinnya maka keandalan sistem juga semakin baik Cahyadi and Hermawan, 2015 METODE Penelitian ini dilakukan di PT. Mega Surya Eratama Ngoro, Mojokerto. Waktu penelitian selama satu bulan yakni pada tanggal 10 April 2021- 10 Mei 2021. Penelitian ini difokuskan pada saat beban generator turun, ketika produksi kertas terputus dan saat generator normal operasioanal produksi. Adapun alat dan bahan yang digunakan dalam penelitian ini yaitu 1 Data Log Sheet harian karyawan PT. Mega Surya Eratama, 2 Turbin, 3 Pressure Gauge yang berguna untuk mengukur tekanan fluida gas atau liquid dalam tabung tertutup, dan 4 Aplikasi steamtab yang digunakan untuk menghitung nilai entalphi dan entropi pada kondisi saturated dan superheated. Tabel 1. Spesifikasi turbin Metode yang digunakan dalam penelitian ini adalah metode penelitian kuantitatif, dengan langkah- langkah penelitian dapat dilihat pada gambar 1. Volume 4 Nomor 2 Desember 2022 112 Gambar 1. Diagram alur penelitian Adapun beberapa tahap dalam penelitian ini yakni, 1 mempersiapkan alat dan bahan, 2 mencatat seluruh kegiatan yang terjadi pada proses di tempat penelitian, 3 mencatat data yang dibutuhkan seperti waktu, tekanan steam masuk, dan daya yang dihasilkan oleh turbin, serta penggunaan bahan bakar pada boiler, 4 memasukkan data pada rumus efisiensi turbin, 5 menganalisa dan menyimpulkan mengenai efisiensi turbin yang telah diteliti. HASIL DAN PEMBAHASAN Setelah melakukan penelitian diperoleh data-data yang diperlukan dan dapat dilihat pada tabel di bawah ini. Volume 4 Nomor 2 Desember 2022 113 Tabel 2. Data saat beban generator normal Laju aliran massa uap m Tabel 3. Data pada saat beban generator turun Laju aliran massa uap m Dari data di atas dapat diketahui bahwa pada saat beban generator normal besar tekanan masuk turbin P1 adalah sebesar 4,78 Mpa atau setara dengan 47,8 Bar. Temperatur turbin T menunjukkan angka 470,92 °C. Sedangkan pada saat beban generator turun tekanan masuk turbin menjadi meningkat menjadi 5,02 Mpa atau setara dengan 50,2 Bar. Hal ini menunjukkan bahwa tekanan masuk P1 turbin naik sebesar 0,24 Mpa atau 2,4 Bar. Tekanan masuk turbin pada saat beban generator turun lebih besar dari pada pada saat beban generator normal. Hal ini berfungsi untuk menjaga pressure boiler sebagai bentuk persiapan apabila ada konfirmasi penambahan beban secara tiba- tiba maka operator boiler sudah siap dan tidak terjadi pressure drop. Pada saat beban generator normal temperatur turbin T adalah 470,91 °C dan pada saat beban generator turun yakni pada saat produksi tidak berjalan temperatur turbin turun menjadi 459,61 °C. Temperatur turbin akan turun pada saat beban terputus karena hubungan antara temperatur turbin dengan beban generator turbin berbanding lurus. Pada saat beban turun temperatur akan semakin turun karena temperatur sudah mampu memenuhi kebutuhan pemanasan turbin. Dan temperatur juga bersifat fluktuatif. Data tersebut kemudian dianalisa dengan menggunakan aplikasi steamtab dan diperoleh hasil sebagai berikut Tabel 4. Data hasil perhitungan steamtab Pada saat beban generator normal Pada saat beban generator turun Volume 4 Nomor 2 Desember 2022 114 Setelah hasil dari steamtab diketahui, dihitung menggunakan rumus yang telah ditentukan, besarnya daya pada saat beban generator normal adalah kJ/s. Namun pada saat beban generator terputus atau pada saat kegiatan produksi berhenti daya turbin turun menjadi kJ/s. Efisiensi kerja turbin juga mengalami penurunan, pada saat beban generator normal efisiensi turbin adalah 61,27 % dan pada saat beban generator turun efisiensi juga turun menjadi 52,4 %. Dapat dilihat pada grafik dibawah ini. Gambar 2. Grafik perbedaan daya aktual dan daya turbin pada saat beban normal dan beban terputus Ada berbagai hal yang mempengaruhi besarnya efisiensi diantara adalah laju uap yang masuk ke turbin, tekanan, dan temperatur. Selain itu, hal lain yang berpengaruh pada efisiensi adalah terjadinya loses steam pada sisi boiler dan turbin. SIMPULAN DAN SARAN Dari penelitian yang telah dilakukan di PT Mega Surya Eratama dapat disimpulkan bahwa besarnya daya turbin pada saat keadaan beban generator normal adalah sebesar kJ/s. dan besarnya daya turbin pada saat beban generator turun adalah kJ/s. Selanjutnya, efisiensi turbin pada saat beban generator normal adalah 61,27 % dan pada saat beban generator turun adalah 52,4 %. Hal-hal yang dapat disarankan terkait penelitian ini adalah perbaikan sensor- sensor alat instrumentasi perlu dilakukan agar data yang diperoleh dari penelitian ini lebih 1 kondisi 2Wact Wt Volume 4 Nomor 2 Desember 2022 115 akurat. untuk meningkatkan laju aliran massa diperlukan perbaikan jalur-jalur pipa yang digunakan untuk menyuplai uap ke turbin agar daya turbin meningkat, perbaikan dan pengecekan valve terutama pada sisi valve drainase, agar tidak terjadi loses steam yang menyebabkan peunurunan efisiensi turbin karena valve kurang menutup maksimal ketika turbin beroperasi dalam kondisi normal DAFTAR PUSTAKA Cahyadi, D., & Hermawan. 2015. Analisa Perhitungan Efisiensi Turbine Generator QFSN-300-2-20B Unit 10 dan 20 PT. PJB UBJOM PLTU Rembang. IR. Hariyanto, M. 2010 Boiler dan Turbin. Dalam, Penyusuan Bahan Ajar Kompetensi, Kurikulum Berbasis Negeri, Kurikulum 2007 Politeknik Bandung. Mulyani, D., & Hartono, D. 2018. Pengaruh Efisiensi Energi Listrik pada Sektor Industri dan Komersial terhadap Permintaan Listrik di Indonesia. Jurnal Ekonomi Kuantitatif Terapan, 111, 1–7. Sadono, S. and Effendy, N. 2013. Identifikasi Sistem Governor Control Valve Dalam Menjaga Kestabilan Putaran Turbin Uap. PLTP Wayang Windu Unit 1, 23, pp. 83–90. Saputro, S. T. 2015. Pengendalian Laju Aliran Massa Uap Masuk Intermediate Pressure Turbine IPT Pada Pembangkit Listrik Tenaga Uap Berbasis Distributed Control System DCS , I, pp. 149–160. Sunarwo and Supriyo 2015. Analisa Heat Rate Pada Turbin Uap Berdasarkan Performance Test. PLTU Tanjung Jati B Unit 3, 113, pp. 61–68. Shlyakhin 1993 Turbin Uap. Jakarata Erlanga. Widhiyanto, F. 2019. Fakta PLTU dan Residu Batu Bara. Beritasatu. ResearchGate has not been able to resolve any citations for this Mulyani Djoni HartonoEffective and efficient electricity consumption is one of the main concerns of Indonesian government. Indonesian electricity consumption has been growing rapidly in the last decade. It is predicted that total electricity consumption will continue grow with faster growth rate. Therefore, immediate actions on the demand side arenecessary through electricity consumption efficiency. The study employs a dynamic panel approach on the panel data of 31 provinces in Indonesia during the period 20014-2013. The results suggest that aggregate electricity demand can be reduced through efficiency on electricity consumption in industrial and commercial sector. The study also reveals that real GRDP, population, and changes in the economic structure have a positive and significant impact on the electricity demand. On the other hand, the effect of real electricity price on electricity demand is not statistically dan Turbin. Dalam, Penyusuan Bahan Ajar Kompetensi, Kurikulum Berbasis NegeriIrM HariyantoIR. Hariyanto, M. 2010 Boiler dan Turbin. Dalam, Penyusuan Bahan Ajar Kompetensi, Kurikulum Berbasis Negeri, Kurikulum 2007 Politeknik Sistem Governor Control Valve Dalam Menjaga Kestabilan Putaran Turbin UapS SadonoN EffendySadono, S. and Effendy, N. 2013. Identifikasi Sistem Governor Control Valve Dalam Menjaga Kestabilan Putaran Turbin Uap. PLTP Wayang Windu Unit 1, 23, pp. Heat Rate Pada Turbin Uap Berdasarkan Performance TestSupriyo SunarwoSunarwo and Supriyo 2015. Analisa Heat Rate Pada Turbin Uap Berdasarkan Performance Test. PLTU Tanjung Jati B Unit 3, 113, pp. 1993 Turbin Uap. Jakarata PLTU dan Residu Batu BaraF WidhiyantoWidhiyanto, F. 2019. Fakta PLTU dan Residu Batu Bara. Beritasatu. Tetapi masalah pembangkit energi terbarukan sebagai sarana penunjang juga harus dipikirkan. "Jadi secara prinsip sumber listrik bus itu harus berasal dari pembangkit energi terbarukan, bukan dari jaringan Pembangkit Listrik Tenaga Uap (PLTU) batu bara dan energi fosil lainnya," katanya kepada Kompas.com, Kamis (4/8/2022).
Jakarta, CNBC Indonesia - PT PLN Persero memproyeksikan pada 2022 mendatang akan ada penambahan kapasitas pembangkit listrik sebesar mega watt MW di Jawa, Madura, dan Bali, berasal dari beberapa pengembang listrik swasta Independent Power Producer/ IPP.Hal tersebut disampaikan Direktur Bisnis Regional Jawa, Madura, dan Bali Jamali PT PLN Persero Haryanto mengatakan, salah satu pembangkit listrik yang beroperasi pada 2020 yaitu Pembangkit Listrik Tenaga Uap PLTU Batang MW yang dikembangkan PT Adaro Energy Tbk ADRO. Selain itu, lanjutnya, ada Pembangkit Listrik Tenaga Gas Uap PLTGU Jawa-1, dan PLTU Cirebon. Dengan demikian, total kapasitas pembangkit listrik akan bertambah sekitar MW pada 2022."Tahun depan operasi beberapa IPP, PLTU Batang 2 unit, Tanjung Jati 1 unit, juga ada PLTGU Jawa 1, ada PLTU Cirebon, mungkin tahun depan akan menambah MW," paparnya dalam Webinar Efisiensi Penyediaan Tenaga Listrik PT. PLN Persero, Selasa 23/02/2021.Penambahan kapasitas pembangkit listrik pada tahun depan ini diperkirakan akan membuat suplai listrik ke depan akan sangat mencukupi karena menurutnya ini akan menjadi modal dalam pelayanan PLN."Dengan kemampuan pembangkit, suplai listrik ke depan akan sangat mencukupi, jadi modal bagaimana melayani kebutuhan Jawa, Madura, Bali," yang terus meningkat ini juga menuntut PLN untuk mencari permintaan baru. Pasalnya, kondisi pasokan listrik di Jamali akan berlebih."Jamali justru akan cenderung over supply kelebihan pasokan, pekerjaan rumah kita bagaimana ciptakan demand di Jamali," kelebihan pasokan listrik bahkan sudah terjadi sejak 2020 lalu sebagai dampak dari pandemi Covid-19. Cadangan listrik dibandingkan kapasitas beban puncak pembangkit listrik atau reserve margin melonjak menjadi 30,10% dari target 25% pada Jenderal Ketenagalistrikan Kementerian Energi dan Sumber Daya Mineral ESDM Rida Mulyana mengatakan, kondisi pembangkit listrik yang terus beroperasi, sementara permintaan listrik masyarakat turun membuat reserve margin pada 2020 mencapai 120% dari target yang dipatok sebelumnya."Kemarin 2020 reserve margin ditargetkan 25%. Tapi kan pembangkit nyala terus, demand turun, maka kemarin reserve margin bengkak jadi 30,10% dari target atau 120% dari target," paparnya dalam konferensi pers virtual 'Capaian Kerja 2020 dan Rencana Kerja 2021 Sub Sektor Ketenagalistrikan', Rabu 13/01/2021.Menurutnya, semakin besar reserve margin dalam kondisi saat ini, maka ini pertanda hal yang buruk. Hal ini dikarenakan ongkos yang dikeluarkan PLN menjadi bertambah."Ini makin gede reserve margin, makin jelek, karena cost PLN jadi nambah," tuturnya. [GambasVideo CNBC] Artikel Selanjutnya Pembangkit Baru Nambah, Cadangan Listrik PLN Melonjak ke 50% wia
.
  • mcyg8l1oxo.pages.dev/32
  • mcyg8l1oxo.pages.dev/353
  • mcyg8l1oxo.pages.dev/311
  • mcyg8l1oxo.pages.dev/251
  • mcyg8l1oxo.pages.dev/236
  • mcyg8l1oxo.pages.dev/161
  • mcyg8l1oxo.pages.dev/139
  • mcyg8l1oxo.pages.dev/236
  • mcyg8l1oxo.pages.dev/25
  • pt pembangkit listrik tenaga uap